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Introduction

» Deep learning methods are very well suited to the image-like data in LArTPC-
based neutrino experiments

* In recent years, the use of DL applications has become quite common in the
LArSoft reconstruction workflows of various experiments

« The DL task typically performed in these workflows is that of inference, which while
not as demanding computationally as the training task, can still dominate a
significant portion of the LArsoft workload when performed on less than optimal
architectures like oridinary CPUs:

— e.g. the CNN-based EmTrackMichelld algorithm in a ProtoDUNE-I reconstruction workflow
accounted for >60% of the total execution time.

 Since the use of DL applications in LArSoft workflows will only become more
widespread in coming years, it is important to find a practical solution to address
the increased computational requirements this will entail
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Naive solution: deploy GPUs on every worker node

Cloud computing cluster
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Worker node + GPU

Assuming a moderately sized cluster with 100 nodes:
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Even with low to mid-range “gamer-class” GPUs,
easily cost $20k-30k

Increased hardware and software maintenance
Increased power and cooling requirements
Inefficient use of GPU resources

Less flexible and more costly to upgrade or replace
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Alternative: Offload inference task to GPU on a remote server

Cloud computing cluster

“GPU as a Service” (GPUaaS)
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------------ with a GPU, running Nvidia’s free, off-the-shelf
TRITON Inference Server

Worker node + GPU
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The SONIC approach

« This “GPUaaS” approach has been taken in the CMS experiment:
— SONIC: Services for Optimized Network Inference on Coprocessors

 |tis also implemented in LArSoft as NuSONIC and there are two papers that
describe GPUaaS in LArSoft:

} frontiers pubishect 14 Jaruary 2021
in Big Data doi: 10.3389/fdata.2020.604083
Accelerating Machine Learning Inference with GPUs in GPU-Accelerated Machine Learning
ProtoDUNE Data Processing Inference as a Service for Computing
N in Neutrino Experiments
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Google Cloud Platform based inference server

Cloud computing cluster l') Google Cloud Platform

Google Kubernetes Engine
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Initial study: using simulated ProtoDUNE events

. EmTrkMichelld module proc time vs # jobs (GKE-4gpu)
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~270 clients

220 s CPU time for ML module (EmTrkMichelld) is reduced to ~13 s
~17 x speedup for the ML module and ~2.7 x overall speedup

Saturation point at ~270 simultaneous clients — GPU:CPU ratio of ~1:68
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Updated study: Using 7.2M real ProtoDUNE events

- 6.4M events using Triton

- 0.8M events using CPU only for
comparison

- 100 GPU GCP Kubernetes based
Triton inference server (vs 4GPU
in initial study)

- Up to ~6000 concurrent jobs
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Updated study: network saturation
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ML module execution time
vs network traffic indicates
network saturation.
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ML module execution time:

Dual peak structure with long
tail due to network saturation

Taking into account 100 Gb/s
limit of FNAL switch for
outbound traffic, and amount
of data transmitted per event,
imposed a limit to the number
of concurrent Jobs = 600.
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Updated study: GPU vs CPU speedup

CPU Series
[ AMD 6376 For FNAL runs:
1 AMD EPYC 7502
Intel E5-2650 v2
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£ el £5.2670v3 * ML module take ~79s to execute on CPU
6000 [ Intel E5-2680 v4 . .
31 intel Gold 6140 « Compare with ~25s to execute on GPU (see slide 9)

non-FNAL

* Speedup of ¥3x
* Inthe initial study using simulated events, speedup was
more like ~17x (see slide 7)
* Discrepancy: newer version of tensorflow appears to have
been optimized to take advantage of CPU extensions
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Distribution of ML module
execution times for CPU-only
runs.
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NuSONIC

» For the proof-of-principle work described on slide 7, we used the Nvidia Triton C++
client library API directly in the relevant LArSoft code for EmTrackMichelld

 Since then, we introduced the NuSONIC inference client library, which is a layer
sitting on top of the Triton C++ API:

— Based on CMSSW'’s SONIC (Services for Optimized Network Inference on Coprocessors),
essentially a pared down version retaining only components most relevant for LArSoft

— Higher level interface that abstracts away Triton specific details, making it easier to use
— Insulates the LArSoft user from future updates to the Triton API, simplifying maintenance
— Found in LArSoft since v09_27_00, specifically since larrecodnn v09_08_00

* In the following slides, we will give a brief overview of how to use this in LArSoft
code, just to give you some idea. For more details, please refer to:

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/GPU_as_a_Service

Jt :
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https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/GPU_as_a_Service

Prerequisites for using Nu SONIC

Server side:

* Must have an Nvidia Triton inference server running:
— Either locally on computer, in a docker container for example
— Or remotely on a dedicated server
* Machine learning model for your algorithm must be available in the model
repository of the Triton inference server
— Must be configured in a specific way which is described in some detail on the wiki page

2% Fermilab
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Prerequisites for using NuSonic

Client side software:
* Modify the CMakeLists.txt file to include line for NuSonic Triton library:

art_make(
TOOL_LIBRARIES

larrecodnn_ImagePatternAlgs NuSonic_ Triton

)

« Include the following header in your code:

#include "larrecodnn/ImagePatternAlgs/NuSonic/Triton/TritonClient.h"
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Four basic steps in using NuSonic client in code

* Once the requirements in the previous slides are satisfied, implementing an
inference client in your code with NuSonic involves only the following 4 simple

steps:

1. Creating the client

2. Describe or prepare the data for the corresponding model input
3. Send the inference request to the server

4. Retrieve the inference results from the server
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Step 1: client constructor

« Step 1: create a Triton client by constructing a lartriton:: TritonClient object:

// ... Create the Triton inference client
triton_client = std::make_unique<lartriton::TritonClient

« The argument for the constructor is a fhicl::Parameter set with the user-specified
parameters described on the next slide.

Jt :
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Step 1: client constructor (continued)

"serverURL"

"verbose"

"modelName"”

"modelVersion'

"timeout"

"allowedTries'

"outputs"”

std::string

bool

std: :string

std::string

unsigned
unsigned

std: :string

Description

host name or IP address of inference
server and port number, e.g. when

using grpc - ailab@1.fnal.gov:8001 or
localhost:8001

if true, generates verbose output when
the inference server is contacted

name of the model to use for running
inference, it is also the name of the
directory in the model repository of the
server that contains the files
associated with the model

version of the model to use for running
inference, if this string is empty, the
server will decide based on its internal
policy

timeout in seconds, currently unused,
should set to any random value

maximum number of retries if inference
request fails (default is 0)

user specified list of model outputs
whose predictions will be returned,
empty list "[]" means all outputs will
be returned
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Step 2: Preparing the data

e Set the batch size

triton_client->setBatchSize(usamples); // set batch size

» Create a lartriton:: Tritonlnput container of the appropriate data type for the model
and reserve enough capacity for the specified batch size:/

auto datal = std::make_shared<1artriton::TritonInpud{EEzéEE}();

datal->reserve(usamples);

Jt :
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Step 2: Preparing the data (continued)

 Fill each element of container with flattened 1D representation of image:

// ~~~~ For each sample, prepare images for sending to server
for (size t idx = 0; idx < usamples; ++idx) {
auto& img = datal->emplace_back();
// ..first flatten the 2d array into contiguous 1d block
for (size_t ir = @; ir < nrows; ++ir) {
img.insert(img.end(), inps[idx][ir].begin(), inps[idx][ir].end());
¥
h
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Step 2: Preparing the data (continued)

* Get the TritonlnputData instance associated with the model input to which data will

be sent:

auto& triton_input = triton_client->input().at("main_input");

* Convert data into native format of the inference server:

triton_input.toServer(datal); // convert to server format
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Step 3: Send the inference request to the Triton server

« Send the entire batch of images prepared in the previous step to the server with the
dispatch method of the Triton client:

/] ~~~~ Send inference request
triton_client->dispatch();

« And wait for the blocking call above to return ...
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Step 4: Retrieving the results

» Once the dispatch call in the previous step returns successfully, the predictions can
be retrieved by name for any output through the TritonOutputData object:

triton_client->output().at("em trk none netout/Softmax");
triton_client->output().at("michel netout/Sigmoid");

const auto& triton_output®
const auto& triton_outputl

 The results need to be converted from the native format of the server back into the
data type associated with each output:

const auto& probo
const auto& probil

triton_output®.fromServer<float>();
triton_outputl.fromServer<float>();
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Step 4: Retrieving the results

« Get the number of classifications or categories associated with each output:

auto ncato
auto ncatl

triton_output®.sizeDims();
triton_outputl.sizeDims();

» Get predictions for each classification/category in each output for every image in

22

the batch. In this example, we store these results in a 2D vector:

std::vector<std: :vector<float>> out;
out.reserve(usamples);
for(unsigned 1 = 0; i1 < usamples; i++) {
out.emplace_back();
auto& img = out.back();
img.reserve(ncat@+ncatl);
img.insert(img.end(), prob@[i].begin(), prob@[i].end());
img.insert(img.end(), probl[i].begin(), probl[i].end());
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Resetting the client

« Before repeating the 4 steps described above for a new batch of images, you will
need to reset the Triton client. This will re-initialize all TritonlnputData instances by
clearing out any values set by previous calls in the data preparation phase:

triton_client->reset();
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Conclusion

NuSONIC in LArSoft: GPUaaS capability available for accelerating DL inference
tasks by offloading requests to a remote nVidia TRITON based inference server:

— GPUaaS is not limited to GPUs, the underlying accelerator or co-processor can be based
on other types of hardware like FPGAs, TPUs, GraphCore IPUs, etc

« Two detailed sets of studies have been performed and published that characterize
the performance of this DL inference acceleration service in LArSoft using
ProtoDUNE data

* Provided a brief overview of how to use this service in LArSoft

» To make this really useful for experimenters, we will need to provide TRITON
servers either at the lab or in the cloud

— Ongoing discussion on making such servers available
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